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FOREWORD

This report is a description of an investigation conducted by the }lugh's

Aircraft Company, Radar Systems Group, El Segundo, CA, to test Gtne use of

pattern recognition techniques for determining the target view in ISAR images I
of aircraft targets. Top and side view images of aircraft targets were used

to test the techniques developed during this study. The tests included auto-

matic view determination followed by classification using the method of

moments. j
The investigation was performed by the Signal Exploitation Programs

Office of Hughes Radar Systems Group, for the Office of Naval Research,

Arlington, VA, under Contract N00014-80-C-0940.

Dr. George A. loannidis served as the Hughes project manager.

Commander Roger Nichols was the program manager for the Office of Naval

Research, Arlington, VA.

This final report is submitted in accordance with the data require-

ments of Exhibit A, dated 25 September 1980, Sequence A002 of the Contract

Data Requirements List 1423.

The authors acknowledge the support and contributions of Messrs.

James Crosby, Manager, and Calvin Boerman, Assistant Manager of •1

Signal Exploitation Programs at Hughes.
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1.0 INTRODUCTION AND SUMMARY

This report contains the results of an ONR sponsored study by the

Hughes Aircraft Company to determine the target view (top or side) pre-

sented by ISAR radar images of aircraft targets. The knowledge of target

view is then utilized by algorithms for automatic target recognition, using

the Method of Moments.

The aircraft radar images used in this investigation were generated

by the application of the ISAR technique to turntable radar data and also

data obtained from flying aircraft targets. The turntable data had been

obtained at the RATSCAT facility under the AFAL E-3A Non-Cooperative

Data Collection program and consist of X-band measurements against

1/3 scale models of an F-102, an F-5E, an A-10, an F-15 and a YF-16.

The stepped frequency technique was used to collect the data;

256 3.4 MHz frequency steps were used to synthesize an 870. 4 MHz band-

width. For the full scale targets, these measurements correspond to S-band

data at 256 MHz bandwidth. The targets were placed on a rotary platform

that rotated at 0. 2 degree increments between adjacent bursts of the 256

frequency steps. Plan view images were obtained by positioning the target

horizontally on the platform. Profiles were obtained by positioning the

target vertically (the wings extending along the normal to the platform).

In addition to the RATSCAT data, measurements on a flying DC-10, a 727,

a 707 and an A-3 were used to form radar images. These data were obtained

by an S-band radar operated by the Naval Ocean Systems Center (NOSC) in

San Diego. By stepping the transmitter frequency pulse-to-pulse at 1.08

MHz increments over 256 pulses, this radar has an effective bandwidth of

276.5 MHz.

The aspects, resolutions and view of the images formed using the

above data are given in Table 1. Examples of the best images from the above

targets are shown in Figures I through 10.

During the study, algorithms (using structural, syntactic and statis-

tical pattern recognition techniques) to determine the target view in ISAR

images of aircraft were investigated. All the techniques were based un a



TABLE 1. RADAR IMAGES OF AIRCRAFT TARGETS
GENERATED FOR THIS STUDY

Number of
Images per Resolution,

Data View Target Aspects meters

RATSCAT', Plan 12 0. 8-70, 3. 8-100, 6. 8- 0.6
130, ... 33. 8-400

RATSCAT Plan 12 140. 8-1470, 143. 8- 0.6
1500, 1 . . 173. 8-180

RATSCAT Profile 6 -180. 0 to 173. 80, -177 0.6to -170,8So.'. -165

to -158.8

RATSCAT Profile 12 -21 to -14. 80, -18 to 0.6
-11, 8o, 1 2 to

16.2 0

RATSCAT Profile 6 158.8-1650, . . 161. 8- 0.6
1680, . . 173.8 to
180.00

NOSC (DC-10) Plan 10 Broadside 0.6

NOSC (DC-10) Profile 9 Nose 0.6

NOSC (707) Plan 12 Broadside 0.6

NOSC (707) Profile 6 Nose 0.6

NOSC (727) Plan 15 Broadside 0.6

NOSC (727) Profile 3 Nose 0.6

NOSC (A3) Plan 12 Broadside 0.6

NOSC (A3) Profile 8 Nose 0.6

, ,RATSCAT Targets: F-102., F-5E, F-15, YF-16, A-10
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segmentation of the radar images using clustering. Since most radar irrmages

of aircraft targets consist cf a collection of bright spots that correspond to

strong scattering cent,.rs surrounded by low intensity regions, clustering

tends to identify the location of thW major scatterers.

In the syntactic schemes Investigated, the cluster decomposition of

radar images was used to construct a tree graph structure with clusters as

nodes. These connected graphs or tr.ees then were translated into strings of
symbols that characterized the relative '.irection of a branch at a given

node as described in detail in Section 4. 0. An effort was made to identify

the occurrence of symbols or symbol groupings that were characteristic of

a view. For example, for a cross-like tree structure the symbol D was

assigned to the node at the center of the cross. At the start of the investi-

gation, it was thought that top views would result in ouch structures because

of the wing extent. However, the profiles obtained using the RATSCAT data

were often of very poor quality, and cross range sidelobes often produced

a wing-lihe horizontal extent of the target similar co that observed on top

views, Also as a result of the sidelobes, a horizontal branch at the location

of the vertical stabilizer was often present Ir. both top and side views, Since

no unique distinguishing feature was identified when the RATSCAT targets

were used, probabilities were assigned as to the occurrence of symbols and

groups of symbols for each view. The relative position of symbols and the

probability for a given grouping were described by a set of rules similar to

the grammatical rules that describe the relative position of words in a

sentence. Then a syntactic analysis was used to decide whether a given string

of symbols satisfied the rules of the top or side view grammar. Since both

grammars contained the same rules but with different probabilities assigned

to their use, the syntactic analysis of the string resulted in a probability

estimate for the class membership of the string. Then strings were classi-

fled according to the class with the highest probability. The best view deter-

mination results obtained with this technique were 75 percent correct. Using

a similar technique on a few images of the DC-10, 727 and 707 from the NOSC

data set, an 89 percent success rate was obtained.

During the investigation of syntactic cloostsific.tion schemes, an effort

was made to identify parts of the image that tend to recur in one view or the

13



other. As a result of this effort, a cechnique that uses recurring regions of

the image was developed. In this technique, top and side view composite

images are formed from top anid side views of similar targets in the training

set. Then a distance measure is defined between an image and the composite.

With this measure, images are classified by a nearest neighbor decision rule

as top or side views. Tests using the RATCAT targets indicated that a 90 per-

cent success rate could be achieved with this approach, which is described

in Section 5.

A rule based structural approach to view determination was Plao

investigated, ancl algorithms were developed to simulate a simple human-

like interpretation of a radar image. This technique was tested using images

of a DC- 10, a 727 and a 707 from the NOSC radar data. A total of 54 images,

37 top views and 17 side ipiws, were used to test the algorithm. The classi-

fier gave the correct ansvt•r in 53 out of 54 c.ses; one side view of the

DC-10 was clasrified as ambiguous.

Using the geometric moments (computed after cluster decomposition

of the image), a Gaussian classifier was used to determine the view and

classify the targets. rhe view determination performance of this statistical

pattern recognition scheme applied to tht, RATSCAT targets was 78 percent

correct for tail aspects and 85 percent correct for nose aspects. Target

classification combined with view determination gave 71 percent correct

classification for nose aspects and 80 percent correct for tail aspects for

images classified as top views, For images classified as profiles, the

corresponding results were 57 and 60 percent. A test was also performed

to test classification without view determination using the RATSCAT

targets. Classification was performed for a 10-class problem: F- 102 top

and side, F-15 top and side, F-16 top and side, F-5E top and side, A-10 top

and side. The results were 44 percent correct for nose aspects and 38 per-

cent correct for tail aspects.

These results indicate that for the RATSCAT targets, some common

features do exist among the top views of all the targets that are different from

similar features for side views. In general, the results of this investigation

show that if the quality of radar imeages is good, view determination is posal-

ble and tends to improve classification.

14



Section 2 contains a summary of radar image classification using the

method of moments. Radar image segmentation using clustering is discussed

in Section 3. A syntactic approach to view determination is described in

Section 4. Section 5 presents a view determination scheme using pattern

matching. 3ection 6 is a disicusaiun or a structural approach to view determi-

nation. Section 7 contains the statistical approach to view determination and
classification using moments. Conclusions are given in Section 8.

!;I
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. 0 RADAR IMAGE CLASSIFICATIOIT USING
THE METHOD OF MOMENTS

One of the more difficult problems in the design of a recognition

system for pictorial patterns is the selection of a set of appropriate numeri-

cal attributes or features to be extracted from the object of interest for clas-

isfication. The set of geometric moments of the image and invariant functions I
of these moments has been applied successfully to the recognition of optical

pictures. (11 , [21 [31 The geometric moments and invariant moment func-

tions and their use in classifying radar images of targats are detailed in this

s e cti on.

2. 1 GEOMETRIC MOMENTS AND INVARIANT MOMENT FUNCTIONS OF
IMAGES

The non central (p + q)th order moments of an NxM rectangular image

field f(xi, yj) are defined by

np 1T N M f (xi Yj) X1 Pic (I)j

i=1 j=1

where (xi, yj) are the coordinates of the (I, j) cell and f(xj, yj) is the intensity

function.

Th; centr,,d moments for the same rectangular image field are defined

by

N M

mpq N 1 f(xi Yj) (x. "Z)p (y. _7 )q (2)

i=l j=l

where:

n= -
(3)

n 00

16



and

n01  (4)

SThe ncrm alized central m om ents are defined by

m
Sp q = 00---

and are invariant with respect to changes in the image intensity. Central

moments as used in this discussion are the normalizerd central moments

defined above.

Frorn Equation (2), the central moments are invariant under transla-

tion but vary under rotations of the image. Using the theory of algebraic

.,L invariants, Hu [21 has shown that algebraic relations exist amcng the central

moments of an image that are invariant under translation and rotation.

These invariant moment functicns are of the form
t'I'

p(m m .m•;iplql pzqz Pnqn

and are invariant under coordinate transformations. In particular, a set of

invariants known as orthogonal invariants are functions whose value does not

change under a rotation of coordinates, i.e. they are invariant with respect

to the orthogonal transformation

X') ( cose sine x
-sine cose)()(5

iy

for any angle 0, i.e.,

(M mp q (raqo-mp qS( 'n , ' n-s , .. ) (= n .. )n
.q 1  P 2 qZ %nn pq n

17

S.. . . r =r~ • '1,-'



where the m are computed using the iniage intensity field f(x, y) and the
Piqj

are conmputed from f(x', y'). When these functions are invariant underP1iq
rotations and/or reflections ab at one of the coordinate axes, they are calied

absolute orthogonal invariants. In this dicusslon 'invariantc' are those

absolute orthogonal invariants.

Using the theory of algebraic invarirnto, Au [2] has shown that the

number of invariants involving moments from se :ond to nth order (n = p 4 q)

are the same as the number of rmoments with ord irs 2 to n, which is

N

In optical and infrared image recognition systems, only invariant functions

obtained from the seco.nd and third order mroments are us'ually used. For

these moments, the Aix absolute orthogonal invariants are given by

=0 0 + #1I0 r (6)

P + 402 1 2 (7)

2 2,P --1 [(• 12' + 20"'2 " o 3 )] (8)

r94

P3  0 " (1'3 + 12)2 + (3zP + o 0 3 ) (9)

r

r

+(MlO)~li~o 3 .3M 3 +i) 21O32 (10)((Ao1

II



P5 8 [(ZO'oz O+l -r

4 4 11i(A304 412) 2 +1103)]

and one skew orthogonal invariant is given by

1) l2- - (L -1"O03 3O 12' 30+ 12 2 ! 03r
(12)

~ +• 2 ~0)I3(•3 z 2o k 1.i 3)2)1.

Above p1. p2 , .... p6 have been normalized by powers of r to remove the

effect of uniform scale changes. Because the quality of most radar images

is not good compared to optical or FLIR images, the number of moments

and invariants used in the classification of radar images [4] '. much larger

than six. In particular, all invariant functions involving central moments

up to order n = 7 (i. e., a total of 33) were used in radar image classifica-

tion tests performed in our earlier work in this area [4]. In these classifica-

tion tests, all the above invariants as well as smaller subsets of these

invariants were used to construct feature vectors. Classification results

from these tests [4] are presented in Figure 11.

2. 2 COMPUTATION OF TARGET AS-ECT USING THE GEOME'rRIC

MOMENTS

If the rotationally invariant moment functions are used as features

for classification, the target orientation in the image plane does not have to

be computed. However, if that orientation is desired so that other recogni-

tion techniques, which need that information, can also be applied, the central

moments can be used to give the target orientation as .1hown in Figure 1Z.

Figare 12 also sh.ws that 4f an ellipse is fit to the aircraft image, the orienta-

tion of the major axis, which usually coincides with the fuselage, can be

obtained from (see Hu [3])

19
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Figure 12. Computation of fuselage orientation by fitting ellipse to target Image,

jtan Ze - •2 '0 )'(13)

where e is the angle of this axis with the horizontal (x-axls). I
In the previous Hughes study [4] the performance of the above formula

in e.tinvating the target aspect angle was tested by using the images of the

five RATSCAT targets. The results are presented in Figure 13 in the form

of a histograix, that plots frequency of occurrence versus error in orientation

angle estimate. A total of 36 images per target covering aspect angles fromn

0 degrees (nose on) to 180 degrees (tail) were used in constructing the plot

in Figure 13.
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3.0 RADAR IMA,-7 ';EGMENTATION USING CLUSTERING

Radar images of aircraft targets genz.ira consist of a collection of

bright spots surrounded by low intensity regions. The poai'.r.ns of these spots

coirespond to the locations of strong scatterers on the target. Thu,, . decom-

position of radar images into segments consisting of groups of neighboring

bright spots can be used to identify the major radar scatterers on an aircraft

target. Such a decomposition can be obtained using the ISODATA clustering

scheme developed by Ball and Hall [5, 6). In outline form the essential steps

of the algorithm are

I. Select initial center estimates.

2. Assign every sample to the cluster whose center is closest, using
the current estimates of the centers. '

3. Compute new centers for each cluster and compute the "within-
group variability' (i.e. , the sum of the covariances of each corn-
ponent of the sample vectors for that group).

4. Split the average center of each group found in Step (2) into two

centers if the within-group variability exceeds a threshold 0e,
which is set by the operator. The group is split by formingt-wo
new cluster centers from the original. The new centers are
identical to the original, except for that component having hijhest
variability, which in given the values "x + A and A where x iki
the mean value for that component and A is some offset typically

A = r. This results in the "birth' of a new cluster.

5. Regroup the samples using the new cluster points, and then again
find the cluster centers for each group.

6. Compute inter-class distances between all pairs of cluster centers.

7. Combine groups whose distances apart are less than a threshold
9c.{c'

8. Iterate the procedure until no changes occur.

As seen from this brief d,;scription the ISODATA algorithm is a merg-

ing and splitting process which iterates over the image several times before

coming up with the final set of clusters. In the original report [61 the assump-

tion was made that if the algorithm was allowed to iterate enough times then

it would converge to a stable set of clusters.

'*The meaning of close depends on the data and the values of the
pa rameters.
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However, use of the algorithm on radar images of aircraft targets

showed that the algorithm did not converge to a stable set of clusters, To
improve the convergence properties of the algorithm, when used with radar
images, considerable extensions were made during this study in such areas
as finding optimal clusters of a 2-dimensional radar image and criteria for
convergence of the clustering algorithm. In particular a criterion was intro-
duced to determine when the merging and splitting process should be stopped
and a new set of criteria was introduced to control which clusters should be
split and which clusters should be merged. This revised version of ISODATA
has better converp,ence properties when used on radar images and in the

majority of cases tried during this invest'gation it correctly identified the
major scattering centers on the target. In what follows there i, a, brief

'iescription of the criteria introduced to contro) the merging and splatting
pr'ci. ess of the ISODATA algorithm,

"...he criteria were derived from the scatter matrices used in multiple
discrimrin:t. analysis. Ior each cluster the coordinates of th!! cluster center

and the within -luster scatter matrix were defined as follows

MO (k)
S MOO (k) (14)

"MOO (k) 
(15)

where and ik are the coordinates of the cL,,ster center and

2
M (k) M1 (k) M10 (k) M1 0 (k) MO I (k)

M1/ (k) M 0 2 (k)/ \Ml 0 (k) M 0 1 (k) M 0 1
2 (k)

is the within-cluster scatter matrix
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where:

Nk

M0 0 (k) - VrA (17)

i-N

Nk

Nk
MI(k)- = •i/X Yi (19)

Nk
M2O (k) Y (20)

i-I

Nk

i--I

Nk

t--1

A. is the intensity of the ith plicel in the kth cluster and Nk is dfle total

number of pixels in the cluster.

U sing th b v , t e total wit,.hin cl s e Lo tter~ rn t~ i dewed b

sw =• sk(23)
k l
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and the between clusters scatter matrix given by

N XNc k

sB M00 ( k) X " (k 7" ) (24)

where N is the total number of clusters and and y are the coordinates of the

center ox' gravity of the entire data set defined by equations similar to Equa-

tions (14) and (15). Using the above definitions a clustering fidelity criterion

is introduced (see also (71) based on the ratio of between- to within-cluster

scatter measures given by

J tr(SB)/tr(SW), (25)

where tr(,) indicates the tr- ce (sum of the diagonal elements) of a matrix.

Since,

tr(SB) + tr(Sw) tr(ST) constant

where ST Is the total scatter matrix of the data the fidelity criterion of

Equation (25) can be modified to

(J+1) tr(SW) (26)

rhis criterion was used to control the merging and splitting process of the

ISODATA algorithm until the ratio of Equation (26) approached a predeter-

mined value. Experimentation with aircraft radar images showed that J - 7
gave clusters which were consistently in agreement to those formed by

human observers.
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During execution of the algorithm tr(Sw) was continuously updated

using

Nc 2 2
"M1  (k) + M,, (k)

tr(SW) = M2 O (k) + MO2 (k) MOO (k)

where N is the number of clusters. If clusters k and k are merged the!i c
•- resulting change in tv(SW) is given by

M 1 0
2 (k1 ) + M 0 1 (k1 ) M1 0

2 (k 2 ) + MO1 (k 2 )
-rS M (k) + M ..

Moo (kl) + M10 (k2 ) 2 MOO (kl) + MOO I(kZ)

i•' Using the &above equations two clusters ari merged lIf their ceitersM0 (k) + M0 (k,) Moo (kl) + Moo (k~

are closer than a preset distance and if the value of

tr(Sw)"W J+l

7 decreases as a result of merging.

The criterion fcr splitting clusters was based on the RMS extent of

the cluster and on a prediction of the value of the ratio in Equation (26).

The predicted value of the ratio in Equation (26) was obtained using an

estimate of the change in tr(SW) as a result of splitting given by

Atr(Sw) -d 2  M 0 (k)

where

d RMS extint
d 2
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The above criteria were used to control the merging and splitting

process in ISODATA. The process stops when

tr(S J+l

is minimum.

Examples of cluster decomposition of aircraft radar images are

shown in Figure 14.

I
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Figure 14. Top and side view cumer deo~mposition.
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Figure 14. Top and side view cluster deoomposition.
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4.0 A SYNTACTIC APPROACH TO VIEW DETERMINATION

It was anticipated that top views and side views could be distinguished

by noting the prominent presence of wing-like structures on a top view, and

of a tail-like structure on profiles. Furthermore, the presence of such

structures should be easily determined from a simple graph representation

of the'given image, as follows:

The graph would consist of nodes which represent clusters of "bright

points" in the image, obtained by ISODATA or by other clustering methods.

Such clusters tend to represent the major scattering centers on the target.

Some of the nodes are then connected by "edges" so as to form a graph, The

graph is to be formed in such a way that a good prototypical top view would

have two edges extending in opposite directions from a ""nain stem', forming

a tree-graph in the shape of a cross. The two extending edges, supposedly

representing wings, should indicate a top view, Such a cross structure lends

itself to a simple syntactic representation,

With this kind of approach in mind, the ,images were processed,

thresholded, and clustered, and a graph or tree was formed.

Two distinct sets of data were available for use: RATSCAT data,

which provided a systematic set of top views and side views from known

aspect angles, obtained from controlled rotation of each target on a rotary

platform, and NOSC data, which p ,vided data of th'. target in ac.tual flight,

The RATSCAT data provided image arrays with less detail and resolution

than the NOSC data, and also appeared to be of poorer quality in general,

We will discuss the syntactic view determination work done with the

RATSCAT data, and then with the NOSC data, noting that the work with NOSC

data was more promising and therefore was developed further.

4.1 SY.NTACTIC ANALYSIS OF RATSCAT IMAGES

For the RATSCAT images, the graph tree was formed by using the
"minimal spanning tree" for the given nodes or clusters. Some alternative

distance measures we-re used in forming the (minimal spanning) trees, and

some spurious small clusters were ramoved in accordance with an adaptive

threshold criterion.
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These graphs or trees were then translated into strings, in a manner to

be described later. From these strings of the top views, top view grammars

were constructed, and from strings of profiles, side view or profile grammars

were constructed. These grammars are then syntactic descriptions of their
respective viLews.

A minimal spanning tree is defined as follows [see Meisel 81:

A spanning tree of a connected graph G is a tree in G which contains

every node of G. The weight of a tree is the sumof the weights of its edges. A

(Typically, the weight of an edge is its lei -,th, which is the distance between

the modes of the edge.)

A minimal spanning tree is the spanning tree of minimal weight.

In forming the minimal spanning trees, two alternative weight or

dista.ce measures were used. The first is the usual Euclidean distance

metric

d = (Ax) + (Ay)

The second weight -s based on the ratio of the between-cluster variance to

the sum of the within-cluster ".ariances and is given by

M ooi M ooJ dM00 Moo(i) M(j) *
M ()+ TF*Mo(j) oa.2 + Mo(J) a-

where M o(k) is the sum of the intensities of the pixels in the kth cluster,

d is the square of the distance between the two cluster ccnters and

2 2 2
a-.j -x. + o-

are the characteristic sizes (orthogonal variance components) of the jth

cluster.
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The transformation of tree to string was designed to yield a symbol D

for a simplistic "wing-like" distribution of clusters, as illustrated by

CC

D

C

graph string (CCDC)

The other two symbols, A and B, arise when the graph has an edge

to only one side or the other of the "main" vertical path, e.g.,

C

A

C

C

=-. B

C

graph string (CACCBC)

The C represents edges or segments of the main stem.

In an attempt to use the presence of D, and even the presence of an

ACB or BCA which somehow "approximates" a D, as an indication of "wings''

as seen on a top view, the first target (the F-102) was studied and revealed

higher frequencies of D, ACB, and BCA in the side views, This occurred

even after some editing of clusters in an attempt to remove spurious clusters

which could mislead to the formation cf a D as well as other symbols. We do

not propose to use the mere presence of D, ACB, or BCA since the intuitive

inclination is not supported by empirical indications.

In general, the top and side views of the RATSCAT targets, as

processed to date, do no, appear clearly distinguishable. Therefore we

decided to try simple statistical grammars which use the frequency of
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occurrence of each symbol in each position to distinguish the two views, and
see what success rate can be obtained with these grammars.

The transformation of tree to string and the grammars used in the I
classification are

Transformation of Tree to String:

I. Select the vertically highest node

2. Subdivide the image plane into three angulr sectors, as shown
below, used in assigning symbols to branches of the tree graphs

3. Translate tree into string by making the following assignments,
shown here for the single selected node:

BRANCH ORIENTATION SYMBOL BRANCH ORIENTATION SYMQBO

00
I I ,

A AC
// \ !

02250 00 2325 e 135do A
22 00o F 4 I -t
2250 135 220 13Ioo00

t .I

0 SP"226 135 1350

/ \0

4. Select vertically lowest non-leaf direct descendant of current
node, and remove this old current node and related vertices.
If no such descendants, output the string and stop.

5. Go to 3.
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The stochastic grammars studied here are of the following general

form (for more details on graph grammars see the Appendix):

X- Y Y Y,. A
12 P(A/i)

X---- UV2 Y.-.---B
2 U P(B/ )B

U Y YIY2

Vi-I-' YI' iVi Yi P(C/i)C

for i = 3,4 ... , n-2

V- Y ,Y Y Y -~Dn-2 n-i Yn-I n i P(D/i)

for I = 1, 2 .. , n

X is the start symbol, and the nonterminal symbol YI is a position

holder for the i'th position in the string.

[Yi--opP(A/A)A] means that the symbol A occurs in position i with

probability P(A/i) (for the given view), and so on. The grammars differ

only in these probabilities, which are readily estimated from the given sets

of strings.

A preliminary attempt was made to find features which somewhat

distinguish the top and side views for each target separately, i. e. , which

occur more frequently for one view than the other for a given target, and

which repeat their preference in the several targets.

Each "feature" in this attempt was merely the presence of a given

symbol in a specified position in the string derived from the Image. Only

two such featores were found, and their bias or preference was deemed to

be arbitrary.

Another suggested distinction between top and side views was that

a top view would have basically one region of extensions from the main "stem"

representing the fuselage, and a side view would have more than one (two--

one for the wings and one for the tail).
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This feature can be expressed on the strings in terms of having at

least two non-C symbols reparated by a string of Cs of length greater than

zero, or perhaps greater than one. Several formal variations are possible

for expressing this feature in terms of the strings, In any case, a quick

study revealed this feature worked well for the F-102, but had a strong

reversed (negative) correlation for the F-5E (the fourth target), so that it

is not a consibtent view.correlated feature.

4. 1. 1 Tests and Results

For the performance tests presented below the formation of the tree

structure was subject to two TVarameters which determined the threshold for

eliminating spurious clusters and selected the distance measure used in

forming the minimal spanning tree, In the tables summarizing the results

these two parameters are labeled FACTOR and IFUNC, The value of the

parameter FACTOR Is the percent of the average cluster Intensity averaged A

over all the clusters and Is used as the threshold for eliminating clusters.

The value of the parameter IFUNC indicates the branch weight connecting

two clusters which is used in the formation of the minimal spanning tree:

IFUNC = 1 corresponds to the euclidean distance weight between the centers
iL of the two clusters, while IFUNC a2 corresponds to the weight based on the

ratio of the between-cluster variance to the sum of the within-cluster variances

for the two clusters.

For a given combination of the above two parameters the images were

clustered and transformed into tree structures. The tree structures were

then converted into strings of symbols as described above. By observing the

resulting strings rules were derived to distinguish top and side view images.

As described earlier these rules were based on the occurrence "ind position

of the various symbols in the strings. The set of rules together with a set

of probabilities to be applied to each view comprised the stochastic

grammar used for the syntactic recognition of top and side view images.

Stochastic top view and side view grammars, named GRAM 1, GRAM 2,

GRAM 6 were derived from data obtained from 3 different choices of values

for these parameters. The parameter values, view, and each grammar are

related as indicated in Table 2.
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TABLE 2. RELATION OF PARAMETER VALUES,
TARGET VIEW, AND 3RAMM ýR NAME

IFUNC a I IFUNC: -- IFUNC z 2
FACTOR = 50 FA.CTO(P ; 0 FACTOR = 50

Top View GRAM I GRAM 3 GRAM 5

Side View GRAM 2 GRAM 4 GRAM 6

In addition, two non-stochastic grammars w.rý, formed:

GRAM 7 -determines presence of a D, and

GRAM 8 -determines presence of tw- .-egirons ýf A or B or D
separated by at least 2 C,'.

The stochastic grammars GRAM I through GRAM 6 were tested on the

data from which they were formed. The ron-stochastic grammars GRAM 7

and GRAM 8 were not formed from any dt.t., and were tested on the strings

produced with IFUNC = 2 and FACTOR a 50.

Given a string and a grammar (GRAM), the computer algorithm

determines whether the string can be in the grammar at all (I. e, , parses the

string) and if so, computes a value which ordinarily represents the probabi'l-

ity of the most probable derivation, but which can be used as a 'measure of

membership" in the set represented by the grammar. The view of a given

string is determined 1y selecting the grammar for which the above described

mear re is higher.

Three such tests were perf(,' ', -r, one using GRAM 1 and GRAM 2

with the data from which they were c',rrned, the second using GRAM 3 and

GRAM 4, and the third with GRAM 5 and GRAM 6.

Finally, measures were obtained for membership in the sets repre-

sented by GRAM 7 and GRAM 8 for strings produced with IFUNC = 2,

FACTOR = 50. All the above tests were performed on strings obtained from

the first four RATSCAT targets F- 102, F- 15, F- 16, and F-5E using six tail

aspect and six nose aspect images per target for the top views, and 12 nose

and 12 tail for the profiles.
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The results were

FOR GRAM I AND GRAM 2

Determined view

Top Side

Actual Top 36 12
view

Side 23 73

Overall = 75. 5 percent correct

FOR GRAM 3 AND GRAM 4

Top Side

Top 28 20

Side 32 64

Overall = 64 percent correct

FOR GRAM 5 AND GRAM 6

Top Side

Top 34 14

Side 26 70

Overall = 72 percent c:orrect

As for the two nonstochastic grammars GRAM 7 and GRAM 8 men•-

tioned earlier, no significant correiation with or implication regarding target

view was noticed for either grammar Individually, or in combination.

39



4. 2 SYNTACTIC ANALYSIS OF NOSC DATA

Since a syntactic description typically intends to describe "structure,

specifically apacial structure, imageL which had no discernible ("humanly

recognizable") structure were not used. Furthermore, since the NOSC data

are real flight data, each image is not strictly a pure top view or side viev/,

so that the view (as either a top or side view) of many images could not be

determined by any means. Some good images were obtained which seemed

amenable to syntactic analysis, and only these selected images were used.

The approach used for the RATSCAT data served as a starting point;

modifications to the graph forming algorithm were developed to make top

views conform, as much as possible, to a generic graph such as the one in

Figure 15, without unduly forcing the side views to conform to the top-view,

model graph.

Figure 15. Ideal top-vlew graph.

The graph forrniug Is based on the mininmal spanning tree algorithm,

and the primary modifications involve incorporation of cluster orientation

into the distance measure used in that algorithm. Furthermore, this version

of the minimal spanning tree Llgorithrn was made applicable to portions of

the tree, leaving previously formed portionb intact.
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The result of applying this modified algorithm, as compared with

forming a simple minimal sparning tree, is illustrated in Figure ]6, using

top views of a DC-10 and a 727. Graphs formed by this algorithm are also
illustrated in Figure 17.@I

a. DC.10 b. 707

Figure 18, Results of pure minimal spanning tree algorithm (ift) and final modified algorithm (right).

The purpose of including orientation I.t to force the tree to connect
nodes in straighter lines. For example, assuming the orientation of the

plane is known (from the flight trajectory), emphasizing this orientation in

the distance measure tends to connect the clusters along the fuselage in

the resulting tree.

Clusters presumably representing wings were determined by velecting

two "wing-tip' nodes - i. e., the nodes of greatest distance from the presumed

fuselage, one on each side of the fuselage, finding the path (in the tree graph)

from each of these to the fuselage, determining the 'orientation' of each

wing by computing a line of least squares fit for each wing, and using the

orientation of this line in reforming the section of the graph tree represent-

ing the respective wing. This process results in connecting the clusters in

a straight or smoother line along each wing.
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a. DC-1O,

b. 727

Figure 17. Graphs formed from top views (top) and side views (bottom).
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I'I

c. 707

Figure 17. Graphs formed from top views (top) and side views (bottom).

As with the RATSCAT data, the same idea of usIng protrusions to

either or both sides of a main path is used In translating the graph to a

string. However, the description of these protrusions (particularly in

regard to which side of the main path the protruslon extends) has been

refined to accommodate cases where nodes on the main path do not line

up In a sufficiently straight line.

For these data, simply using the presence of a D (i.e. , symbol

representing a "cross, " or a protrusion extending to both sides of the main

path) to indicate a top view yielded 89 percent success (for the selected

NOSC images).

The successes and failures for each of the three targets are given in

Table 3.
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TABLE 3. NUMBER OF SUCCESSES AND FAILURES OF THE VIEW
DETERMINATION FOR EACH VIEW

Determined View Determined View ,

Top Side Top Side

Presented Top 10 0 Top 15 0View "
Side 1 8 Side3

a) DC-10 b) 727

Determined View

Top Side

Presented Top 11 1

View Side 4 2

c) 707

Overall Correct 89 percent
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5. 0 AIRCRAFT VIEW DETERMINATION BY
MATCHING WITH "COMvMON REGIONS"

In proposing a syntactic approach to view determination, it was

suggested that the granmmrars for each view could be constructed byusing recur-

ring substructures - i.e. , parts of the images which tend to recur in one view

or the other. In this section such recurring regions of the images are used.

However, the most successful "grammar" constructed with these is trivial with

respect to grammatical structure, and the method presented here is more

simply described without references to any grammatical constructs.

The test results for the method proposed here indicate that approximately

90 percent success can be achieved with some confidence.

5. 1 ALGORITHM DESCRIPTION AND RESULTS

5. 1.1 The Basic Procedure

I1. Hard Limit each image from continuous grey level to *I (+I if
intensity is larger than the threshold and -1 if it is less).

2. ''Smooth'' the image (i. e. , pass through a low pass filter).

3.Form a composite image for each group of similar targetsusn
images over several aspect angles for each view.

4. Compute similarity measure between each composite and each
image.

5. Normalize each similarity measure to a given composite by the
maximum measure obtained for that composite in the training set.

6. Determine target view in testing set according to a "nearest
neighbor'' criteria (i. e. , assign the target view of the most
similar composite).

5. 1. 2 Forming the Composite Imag e

A composite image of a set of images is formed by arithmetic addition

of the images, followed by some hard limiting on the absolute valu~es. For

example, for two image arrays A and B normalized so that

and -1 :5B(i, j)~ 1
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a composite C is formed by

D(i,j) A(i,j) + B(i,j )

C PD D(i, J) Uj ID(i, j)j) '
C(i,j) ID(ifj)l

where: UT is a step function defined by

I for xtT
uT(x) =

0 otherwise

for some selected threshold T. The hard limiting recovers an image more

similar in type to the images from which the composite was formed as shown

in the example below:

Example:

1 1 1 -1 -1 1 1 -1 st image

1 1 -1 1 -1 -1 1 1 Znd image

1 1 -1 -1 -1 -1 1 -1 3rd image

3 3 -1 -1 -3 -1 3 -1 Sum

1 1 0 0 -1 0 1 0 Composite

This comrorjsite was fr'rned by na rti limiting the absolute values of the sum

array, using a threshold of 3.

In this simple binary case, the composite represents the "points" or
"Hpositions" which are in agreement or in common to the three images; it is

simply an "intersection" or "common region" of the three imnages.

By varying the threshold, different composites can be obtained.. For a

threshold --1, the composite represents a type of hard limited "average" image,

A composite of top views of the F-102, F-15, F-16 and F-5E for tall

aspects, and a composite of side views of the same targetu are illustrated in ¶

Figure 18. These composites were formed using a generalized form of hard I
limiting, as discussed below.
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PLAN VIEW PROFILE VIEW

,144

Figure I& Composites for tall aspects from images of F-102, F-16, F-16 and F-5E aircraft.

5. 1. 3 Generalized Hard Limiting

The images from which the composites are formed can be binary (*1),

but if any significant smoothing is done, they also have a variety of grey

levels between -1 and 1. Therefore the hard limiting is generalized to

recover an image of this type.

The generalized hard limiting is based on a powered sine function,

as i'llustrated in Figure 19:

Let P(x) = [sic[(xT) 2'r]+lj/2 for 0 < x < 2T.

As c approaches 0, this function approaches hard limiting (i. e. , a step

function). The generalizeý3 hard limiting on the absolute values in an array

A, j) is given by

I I':

S, ...... i, j)
Vi,

0j c

x
C T 2T

I INPUT IMAGE INTENSI¶ Y I

Figure 19. Generalized hard-limiting function. (C-, is illustnted.
prgaEbatocenad.As C approaches 0, this fuhrdcon acomputed in the

The~ ~ ~poga generalizoache hard-limitin sbseon A pwrdsin Cuci

Increases. a linear function is approached.)
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5. 1. 4 The Similarity Measure

The basic measure of similarity between images is the "size" or

extent of their 'intersection" or common region. Specifically, it is the sum

of the absolute values in their composite.
If we define the generalized hard limiting function G by

G(x) = -•TP(Ixl)

(where P is as defined previously), then the similarity between two image

arrays A and 1 is given by

SIC(i, j)I

all i, j

where:

C(i, j) G(A(i, j) + B(i, j)).

However, the similarity measures computed in the basic procedure,

between an image and a composite, are normalized by the "size" of the

composite, where the "size" of an image A(i,j) is given by

SIA(i, j)I

all i, j

Therefore the similarity between an image B and a composite A was

computed as

•IGli, i)l

.•IAli, lj)

whe re:

G(i, j) = G(A(i, j) + B(i, j))
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To compensate for a possible bias toward one view or another, a

bias factor F is introduced, and each similarity computed between an image

and a top-view composite is then multiplied by F, and the product is presented

as the adjusted similarity value. Thus F > 1 favors a determination of top

view, F I favors a side view determination, and F = 1 is neutral.

similarity ' F if a top view composite was
Adjusted similarity involved

similarity otherwise

The bias factor F is determined by actually executing the view determination

on the training set and estimating the apparent bias toward one view or the

other.

5. 1.5 Training and Testing

The preprocessed images are divided into two groups, according to

aspect angle; the first group with aspect angles

180°, 1740, 210, and 150, and the second with

1770, 171° 18°, and 12•.

The images in the first group are used for training, and those in the

second group are used for testing, as follows:

For each view and aspect angle, a composite of all four targets at that

view and angle is formed from images in the training set. Training, in our

case, consists primarily of foirming these composites. 'rhe view determina-

tion procedure can now be executed using these composites. Before executing

the procedure on images in the testing set, the algorithm is applied to

images in the training set. This test is used to indicate any adjustments

(e.g., in the bias factor F). Then the (adjusted) procedure is tested on the

images in the testing set.

The results obtained with this view determinatien procedure for the

F-102, F-15, F-16 and F-5F are summarized in Table 4.
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TABLE 4. DETERMINED VIEW 1

Top Side

Actual View Top 14 2

Side 1 15

Overall correct 91 percent

so

1'

t ,
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6. 0 TH-E STRUCTURAL APPROACH TO VIEW DETERMINATION

The determination of target shape usnrig structural techniques requires

that the image be decomposed into a number of parts or segments called

t atoms. These atoms can be sections of the contour of the figure or regions

of bright scatterers called clusters or parts of the skeleton of the image.

A set of intrinsic labels that represent features measured directly on the

atoms is associated with each atom. For example when the picture atoms

consist of regions of bright scatterers (clusters) su-ch intrinsic labels would

be the length, shape, area (size), orientation, brightness, variance of

brightness, and coordinates in the image plane. In addition to these intrinsic

labels, a set of external labels such as the relative position of each atom

with respect to the other atoms in the Image is also used.

The interpretation problem is to assign a set of identifiers, such as

wing, engine, tall, fuselage, etc. to groups of atoms. Since the relative

positions of these major aircraft components are known a priori, the Inter-

pretation problem is reduced to a search for a mapping from the measured

set of atoms to the set of identifiers, which Is consistent with the external

labels, For example, if one atom is labeled tail, then none of the atoms to

the rear of it could be labeled wing.

The formulation used is very similar )what a human would use.

The algorithm picks out an easily distinguishable feature of the image such

as the fuselage clusters and then infers the labels of the remaining clusters

(atoms). This is done by labeling the remaining clusters according to theirr positions with respect to the fuselage.
The structural approach works very well with "good' imnages; good

images being those which are readily interpreted by human observers. Images

which are not well formed, due to either blurring or cross range alias ing or

insufficient target rotational motion during image formation, are not inter-

preted successfully by the algorithm as developed at present. However,

images which are half way bet-.veen top and side view are handled consistently
and interpreted as ambiguous.

The algorithm coded for this project works well on images of large

swept wing aircraft uch as airliners. The extens ion to small delta wing
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fighters was not attempted because the amount of quality data for that class (if

target dirl not warrant the additional effort. Images of a DC-1O, a 727, and a 707

from the NOSC radar were used to test the classifier. There wkere 54 Images,

37 top views and 17 side views. The class.ifier gave the correct decision in

53 out of 54 cases;, one aide view of a DC-10 was classified as ambiguous.

6. 1 ATOMS

The atoms mentioned above are the lowest level of Information about

the image used by the classifier. Individual pixels could be used as atoms

but this would make the problem intractable. The atoms used in the present

algorithm are the clusters of Section 3. Theme clusters provide non-overlapping

image itself.

The cluster properties which were used are

1. (x,y), the center of the cluster

2.(sx, sy), the major and minor axes of the clusters

3. theta, the orientation of the cluster's major axis

4. npnts, the number of points from the image in the cluster

L5. in 0 0 , the average intensity of the points in the clustert

There was one very Important assumption made about the clusters:

no two sections of the original image corresponding to different parts of the

aircraft are contained in the same cluster. This means that the classifier

does not have to deal with the possibility that the same atom may belong to

different parts of the aircraft and therefore may have conflicting labels.

Also considered as atoms were overlapping clusters formed using

the method of [9). Four examples of these atoms are shown in Figure 20: -d.

One of the drawbacks of this cluste~r decomposition, however, is the require-

ment of a good contour, which is difficult to obtain from radar Images. Some

promising results for that problem were achieved using a method based on
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a. Top view. b. Top view

c. Side view. d. Side view.

Figure 20. Examples of graph theoretic clustering on the (F-SE) image contour.Ellipses are fitted to sagments of the ontour.

the shape hull of a set of points but this was too sensitiv- to the image

threshold. ISODATA the method outlined in Section 3.0, however can be

made relatively insensitive to the threshold.

The shape hull of a set of points is the boundary curve obtained from the
intersection of all convex polygons formed by circurmscribing the k nearest
neighbors of every point with the smallest possible convex polygon; see
also [1O].
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6.2 MODELS FOR VIEW DETERMINATION

The structural approach requires models of the possiole classes

against which to compare its interpretation of the image. Top and side view
-models of a DC-10 are shown in Figure 21. i

p,*

IJ 
I

a. Top view.

SI'

I 
ji

b. Side view.

Figure 21. Models of a DC-110.
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The mairn features which the classifier uses are the orientation of the

wings on a Lop view, and the height of the tail on a side view. Other features

considered are the position of the wings with respect to the nose, the sym-

metry of 'he wings about the fuselage, and the lack of one or more wings on

a side view.

A DC-10 is shown in Figure 22 somewhere in between top and side

view. Figure 23 shows a radar image of a DC-10 at this angle. This image

was classified as ambiguous by the classifier.

Figure 22. DC1O at angle somewhere between side and top view.

fI

Ii'I

Figure 23. Radar Image of a DC.10 clessif led as ambiguou by the classifier. (The classifier Interpretation
of this Image corresponds roughly to Figure 22.)
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6, 3 RULES FOR CLUSTER LABELLING

The algorithm coded for this project requires a very rough estimate

of target aspect. This allows initial labeling of the frontmost cluster, which

is labelled nose, and the rearmost cluster which is labelled tail. The aspect

angle estimate can be obtained by a combination of tracking data and the

moments computed for the entire image using the formula:

tan (2 ':') = -2:: ll/('20 -402 (27)

as described in Section Z.

6. 3. 1 Fuselage Formation

The fuselage is determined by finding a set of clusters, which, when

connected, form a relatively straight path from the nose to the tail. The

path is found by tracing a path from the nose to the tail along an optimized

minimal spanning tree. The optimized tree is formed as follows:

1. Compute the minimal spanning tree.

2. Find the path from the nose to the tail along the tree.
3. Compute the slope of the least squares line through the

above path, and let u be the unit vector in that direction.

4. Compute the minimal spanning tree only for the points in
the original path but with a distance function between
point i and J given by

dist sqrt((xi -xj)'"*'*2 + (yi yj)**::2)

(28)
+ ux(xi -xj, yi

This makes the branches of the tree tend towards the direction of the least

squares line. The fuselage is then traced along the resulting tree. An

example of an optimized path is shown in Figure 24.
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TAIL ~TI

NOSE :2
NOSE

a. Non-Optmeab timized

Figure 24. Path from nowe to tail clusters. Dotted lines show the minim al spanning tree.

6. 3. 2 Wing Location '

After the final fuselage is obtained, another least squares line is fit

to it. This least squares line is given in point slope form as:

(y y b(x - xo) (29)

I This line divides the plane into two half planes. The discriminiant.

d b - (x - x) + Yo Y (30)

gives positive values in one half and negative in the other. -In this manner

t clusters which are not on the fuselage are divided into two disjoint sets.

From these sets the wIng are formed. Before the wings are formed, however,

the sets are pruned according to the following set of rules:

let r be the radius of gyration = \qi20 + l12(31)
(see also Equation (6))
1. if the distance from a cluster to its closest neighbor

is >1. 5*r then delete the cluster from the wing set.

2. if a cluster is deleted from a wing set then it is attached
To' the nearest fuselage cluster.
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After the sets have been pruned, then the wings are formed in the

following manner:I

1. compute a minimal spanning tree on the points in the 97t.

2. trace the path along that tree from the base of the wing to
the tip.

The base and the tip of the wing are defined as follows:

The base of the wing is the cluster closest to the point (Xc. Yc)
which is the point of intersection of the perpendicular through
the center of the wing set and the fuselage line. (See Figure 25)

FUSELAGETIP CLUSTER

/ EBASE CLUS5TER

Figure 25. Example of locating wing clusters.

The tip is defined to be that cluster in the set which is furthest
from the fuselage line.

The wings found by the above method are then pruned arnd reformed to

ensure that all spurious clusters have been removed.

6. 3. 3 Unbound Cluster Labelling

After the formation of the fuselage and the wings, there may be atoms

which have not been given any label. These unbound clusters fall into twvo

catego ices, noise clusters and clusters which belong to the fuselage and wings.
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The algorithm for labeling the unbound clusters can be described by

the following four steps:

1. Use a least squares straight line fit through the fuselage clusters
of the form

(y - yo) : a- (x- x0

2. For every unbound cluster with cluster center coordinates
(xc, yc) compute the linear discriminant functions

d a(x - ) - (Y -" )
C 0 C 0O

and depending on the sign of d assign the cluster to either the
left or the right wving.

3. Project the cluster center onto the fuselage. If the projections
do not lie between the nose and the tail the cluster is left
unbound, otherwise proc'eed to the next step.

4. Compute the distance d,. from the center of the cluster under
consideration to the centroid of all the wing clusters. Also
compute its distance df to the fuselage line. If dw< df, assign
the cluster to the wing; else if df < 0. 25 x (distance from nose
to tail), assign the cluster to the fuselage; otherwise, the
cluster remains unbound.

6. 3.4 Engine Detection

One of the significant features of aircraft radar images is the number

and location of the engines. During this project an algorithm was developed

which identified certain clusters as engine clusters even though this informa-

tion was not used in the determination of target view. Furthermore the only

engine detection attempt that was made was to find engines on the wings

using only the relative position of engine clusters with respect to the wing

and fuselage clusters. The present algorithm can be improved by including

such internal clus'er characteristics as density, brightness, texture and

orientations. However even without these more sophisticated detection cri-

teria the present algorithm successfully identified some of the engines on

images of a DC-10 and a 707, examples of which are shown in Figure 26.
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a.DC-1O0i

b. 707

Figure 26. Results of labelling. (Betide each Image Is the line drawing !!H

derived from the labels assi~gned. Stars mark the positions
Of cluslters designated as engines.) _

II

6.4 DECISION ALGORITHM

Once the clusters have been labelled, classification as a top or side-_i

view' is a matter of choosing the right features based on geometric relations •

among the aircraft parts and deciding according to these. Five features were

used to make the classification.

- - I!

6. ~ ~ ~ ~ b 707WngOintto

Fhoiguentto of. esult of labelling. (Beideeah imaeispc the line drawingwa

amongre thrpesnigeaarcaf parts anbecdn a vccrigtor thse.n Fivue fe ature wereP~

E =cos'(r./(Ifl IwI) (32)
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RIGHT
WING

LEFT
WING

Figure 27. Wing and fuselage shown as
vectors in a plane.

Using the angle e for the left and right wings a parameter Nw was computed

by counting the number of wings with proper orientation where proper orien-

tation was defined to be such that Tr/9 <0 <T/z.

6. 4. 2 Angle of Symmetry

The angle of symmetry oI the wings about the fuselage was also com-

puted by drawing a vector between the centers of the two wings as shown in

Figure 28 and computing the angle

VUSSWA•GEV °

XI - -

Figure 28 The angle between the line between
the wings and the fuselage was also
used as a feature.
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s = 90 - (180/r,):: 33)

which ranges between -90 and 90, 0 being perfect symmetry.

6.4.3 Balance Factor

The balance of the wings about the center of the fuselage was also

used as a feature. Two distances dl and d2 were computed as shown in

Figure 29 and the balance factor b defined by

b = 2k:(l/2 - dl/dZ) (34)

was computed. This factor ranges from -1 to 1, 0 being perfect balance.

TAIL
\ (Xo, Vo)

d , 4
did

NOSE• - \

Figure 29. Distances measured to compute

the balance factor.

6. 4. 4 Boolean Features

Two binary feaL;ures, w and t, describing the wings and tail were

computed as follows;

if either of the wings is missing then w = true
else w = false

if the tail extends further from the fuselage than both
wings then t = true
else t
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6.4. 5 Classification Rule

After the above features are computed the following rules are used to

classify each image as a top, a side, or an ambiguous view.

if w is true then SIDE
else if Nw = 2 and not t then TOP
else if N. = 2 then AMBIGUOUS
eIs e Lf Isi < 30 and not t and N > 0 then TOP
else if Isi < 10 and N,. > 0 and Ibi >1/4 then TOP
else SIDE

6.5 SUMMARY OF CLASSIFICATION RESULTS

The program for this method was tested on 54 of the images obtained

from the NOSC radar, broken down as follows:

DC-10 top views 10 images
DC-10 side viewis 9 images
727 top views 15 images
727 side views 3 images
707 top views 12 images
707 side views 6 images

These "good' images were-chosen from the data available because they were

such that a human observer might be able to identify them. The structural

approach does not do well on other images because it is based on human like

classification rules.

All of the 37 top views were identified by the classifier. Of the

17 side views, only one was declared ambiguous (see Figure 33).

Figures 30 through 37 show some examples of cluster labeling of the

ISODATA clusters, using the methods described above. These figures show

that although considerable success has been achieved Avith the above methods

there is still a need to refine and ir.iprove the techniques.
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a rl*..S

woUALI(

TOP

Figure 30, Successful labeling of DC.10 top view.
(Note the engine detection and tall formation).

S/

SIDE
F ig 3 . go

64
0"- IeO

SIDE

Figure 31. DC-10 side views.
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b.4..au1N$|[-O1,
go 1
3.-0, 1-11

TOP

Figure 32. 727 image (top view with almrost perfect features:
balence, wing orientation, and symmetry.)

(us age

•.PALK

SIDE
Figure 33. 727 side views.

65



I s 

L

-: 40'n Is

tugLE

.b.

Fiue3.Rslso aeig77tpves So tene o mrvn h niedtcinshm.

66*3U~1f6



-M-

or
r4UEUU~o* |

b*

SIDE

Figure 35, Side view of '07 which matches the prototype exactly.
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7. 0 VIEW DETERMIINATION USING MOMENTS - A STATISTICAL
PATTERN RECOGNITION APPROACH

Both the syntactic and structural approach to view determination

discussed above were based on recognizing a consistent and repetitive pattern

present in either top or side view images of aircraft targets. In a statistical

pattern recognition approach a set of numerical features is computed from

the image and used to form a feature vector. A training set of feature vectors
from top and side view images is then used to construct a statistical classi-
fier. Using cluster decomposition of the aircraft radar images geometric

moments were computed by considering the center of each cluster as a point

I W with mass equal to the total cluster intensity. All moments with orders 2 to

6 ( a total of 25) were used to form a feature vector. Using feature vectors

from a training set of top and side view images for nose and tail aspects of

1Z the five RATSCAT targets (F-102, F-15, F-16, F-SE and A-10) a Gaussian

classifier was constructed to recogniz~e target view. The performance of

the classifier on. the RATSCAT images is shown in Figure 36. As seen

CLASSIF IER DECISION CLASSIFIER DECISION

TPSIDE TOP SIDE

VIW VIEW VIEW VIEW

> TOP TOP
w VIEW 2VIEW 2

SIDE 19SIDE
VIEW VIEW 2 29

NOSE AIPECTS TAIL ASPECTS

Figure 38. View determination using moments computed after cluster decomposition of radar images of
the five RATSCAT targets. (F-102, F-15, F-16, F-BE, A-10) using separate training and
testing sets.
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in this figure a 78 percent correct view determination was achieved for

nose aspects and 85 percent for tail aspects. A Gaussian classifier was
also used to classify the individual targets after view determinations using
moments computed after cluster decomposition of the radar images. The

resulting classifications performance was 71 percent correct for nose aspects

and 80 percent correct for tail aspects for images :lassified as top views.

For images classified as profiles by the automatic classifier, the identification

rate was 57 percent correct and 60 percent correct for nose and tail aspects

respectively. These classification results are tabulated on a per target

basis in Figure 37. A classification test was also performed on the combined

data set of top and side view images without view determinations. Instead the

classification was performed for a ten class problem: F- 102 top and side,

F-I5 top and side, F-16 top and side, F-SE top and side, and A-10 top and

side. The results shown in Figure 38 were 44 percent correct for nose aspects

and 38 percent correct for cail aspects. These results indicate that for the

RATSCAT targets considered above there are common features among thei*1
top views of all the targets which are significantly different from similar

features for side views. A classification test combined with view determina-

tion was also performed on the combined data set of RATSCAT and NOSC
targets. Because the aspects for many of the NOSC targets were broadside
while those for the RATSCAT targets were nose or tail, an aspect independent

feature vector (such as the one computed from the invariant moment func-

tions) was used for this test. All images from each target were grouped with-

out regard to aspect. Further because the number of images from the NOSC

data was too small to allow splitting into training and testing, the same images

were used for both training and testing. All targets were treated equally for

this test by using the same RATSCAT imager for training and testing on each

target and by combining the nose and tail aspects into one aspect angle sector.

The results of this combined nine class test were 78 percent correct for those

images classified as top views and 70 percent correct for those images clas-

sified as side views. These results are shown in Figure 39,
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CLASSIFIER DECISION CLASSIFIER DECISION

F102 F15 F16 AO FP102 FIB F16 FSE A1O

F102 6 3 F102 2 a

SF1i 6 W F15 1 1 1 1 2

F16 3 1 3 F16 1 4

PFE 7 • F5E 1 1 2 1

AO 4 5 AIO 3

71% CORRECT 57% CORRECT
0% UNKNOWN 0% UNKNOWN

NOSE ASPECTS

CLASSIFIER DECISION CLASSIFIER DECISION

F102 F15 F16 FPE A10 F102 F15 F16 FPE AIO

F102 3 1 F102 5 3

F15 4 2 1 F15 2 1 1 1

FI6 5 FE6 5 2

A03 AIO 2 1 1 5

60% CORRECT
80% CORRECT 0% UNKNOWN

0% UNKNOWN

TAIL ASPECTS

CLASSIFICATIONS OF IMAGES CLASSIFIED CLASSIFICATION OF IMAGES CLASSIFIED
AS TOP VIEWS AS PROF ILES.

Figure 37. View determination followed by classification using moments computed after cluster
decomposition separate training and testing sets.
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CLASSIPE.R DECISION

F102 F15 F16 F5E A10 UKN

F P102 3 1 4 3

FS5 3 4~

F16 1 6 4 1

SF5E 2 7 3

A10 1 1 10

44% CORRECT
0% UNKNOWN

NOSE ASPECTS

CLASSIFIER DECISION

F102 F15 F1b FSE A10 UKN

F P102 2 6 1 3

F15 1 3 3 1 4

•_ F16 1 7 1 3

SFSE 12 7 2

A10 4 4 4

38% CORRECT
0% UNKNOWN

TAI L ASPECTS

Figure 38. Classifications of a combined set of top and side view images using moments
after cluster decomposition. Data are treated as a ten class problem for
these ters i.e., F-102 top and side, ... A-10 top, and side.
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CLASSIFIER DECISION

F102 F1i F16 F5E A10 DC1O 727 707 A3 UKN

F102 10 1 2 1 3

F15 11 2 1

SFIG 2 6 1 1 2

w FSE 4 10 1 2

AIO 1 14 15C,, - - - - - - - - - - - - -
c M -0 10 1

727 2 12

707 1 2 12

A3 1 6 6

78% CORRECT
13% UNKNOWN

CLASSIFICATION OF IMAGES CLASSIFIED AS TOP VIEWS

CLASSIFIER DECISON

F102 FIB FI FBE AO DC10 727 707 A3 UKN (

F102 9 5 1 ¶ 3

, Fib 5 13 1 1 1 1
IiI- -''-

z FIG 1 II 5 2 5
WMr F5E 1 1 13 2 2

AlO 11 4
C,

4 DCC( S

727 1 1 2

707 3

A3 7

70% CORRECT

9% UNKNOWN

CLASSIFICATION OF IMAGES CLASSIFIED AS SIDE VIEWS

Figure 39. View determination followed by classification using invariants computed after cluster
decomposition (training and testing are the same, nose and tail aspect images are mixed).
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8.0 CONCLUSIONS

Summarizing the results } ented in the previous sections, it can be

observed that in general view determination of relatively good aircraft radar

images is possible and tends to improve classification. Since this investi-

gation was primarily concerned with algorithm development, the work

concentrated on relatively 'good' images. The problem, however, is that the

majority of radar images of aircraft targets are not 'good' so that many of

the techniques discussed here may either fail completely or have their per-

formance significantly reduced.

In general the syntactic and structural techniques described here will

most likely fail completely on bad images. For example the Lyntactic scheme

developed here gave an 89 percent correct view determination for good images

of the DC-10, 727 and 707 but using relatively good images of the RATSCAT

targets the technique yielded a success rate which was only 25 percent better

than random guessing. The structural scheme which attempts to interpret

images in a human like manner is also very sensitive to image quality. In
principle much more elaborate rul~ based schemes could be attempted than

the one described in Section 6.0 to interpret bad or ambiguous aircraft radar

images. However, since ISAR images depend on target motion it may be

more advantageous to investigate the use of collateral tracking information

for aspect and possible view determination. The results of this investigation

also show that statistical pattern recognition schemes using moments yield

results which are at least as good as the results achieved with some of the

more elaborate syntactic and structural techniques developed during this

study. Thus it seems that until the quality of aircraft radar images improves

considerably, statistical pattern recognition schemes will provide the most

efficient aircraft radar image classification algorithms.
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APPENDIX

SYNTACTIC PATTLiRN RECOGNITION

Syntax ref to the structure of sentences in a language as described

by a grammar. li, grammar can be defined as a set of rules for construct-

ing (grammatically correct) senten'-s. A formal grammar is defined

similarly as a finite set of rult. L. generating the sentences of the associated

language (a formal )an, a,? .s simply a set of sentences).

In a s;:•.&a.tic ,pproach to pattern recognition, an analogy is made

between patterns in a class and sentences in a language. By analogy, each

patiern ;.n a givn class is ",enerated by a "grammar" associated with that

class. The syntactic pattern recognition task is then

1. To find the grammar from a set of patterns known to be in the
claas

2. Given an unclassified pattern, check if it can be constructed
from the grammar. If so it is in the associated class.

Fo.'rrally, a formal grarnrar il defined as a triple (X, N, T, P)

where N and T are mutually exclusive, fi..iite sets rf symbols. The symbols

in N are cal ad non-terminals, and those in " aresvcalled terminal' symbols.

X is a symbol in N, and is called the "initial nonterminal, " or the "start

symbol". P is a set of "production rules", which are essentially pairs of

strings composed of symbols in T U N Such a droduction rule is denoted vs

x -*--. y

where: x ar.a y are a paii- of strings. y

The productions are interpreted or used as rules for generating the

Sstrngs in Cie set represented by the given grammar. "Application" of a

"P-oduction r'" '

S~x---- y

as above, to an arbitrary string Z consists of finding a substring of 7 identical

to :, and replacing it with y. This .loims a new strirn from Z.
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A string Z, is said to be derived in one step from another string Z

if there is a production x - y of the grammar which, when applied to Z0

results in Z This is called a one step derivation and is denoted by

1

Z°0 :Zl 1

The notion of a derivat-on is then extended to any number of steps by stipulat-

ing that i

and if Z--•Z, and ZI Z' then Z "Z", where Z, Z1, and Z" are
a. ~strings of symbols in {T) U {N). •

The set of strings generated by the given grammar is defined as

({ZIZ is a string of symbols in T, and X niZ where n is any non-negative

integer and x is the start symbol..)

The concept of a grammar can be extended from strings to more

k: general graph structures, tree structures for example as described in [2].

Also, the production rules can be generalized to 'probabilistic" productions,

in which a production

x p

denotes that x would gAt replaced by y with probability p. For a more

detailed presentation of probabilistic grammars and syntactic pattcrga r

reccgnition e-e [1), [2).

Given a string and a grammar, 'parsing" the string refers to finding

its derivation from the start symbol, in accordance with the given grammar.

• To summarize, syntactic rttern recognition attempts to describe each

class oi patterns under concideration as a set generated by the same grammar:

An unclas~sified pattern is tmen classified in the class or set corresponding to

the grammar in which the given pattern can be parsed successfully, or with

the greatest probability in the case of probabilistic grammars.
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